Publications

2022

146. Olivry T., O’Malley A., Chruszcz M. (2022) “Evaluation of the theoretical risk of cross-reactivity among recently identified food allergens for dogs.” Veterinary Dermatology 33, 523-526. DOI: 10.1111/vde.13110

145. Khatri K., Richardson C.M., Glesner J., Kapingidza A.B., Mueller G.A., Zhang J., Dolamore C., Vailes L.D., Wünschmann S., Peebles R.S., Chapman M.D., Smith S.A, Chruszcz M., Pomés A. (2022) “Human IgE monoclonal antibody recognition of mite allergen Der p 2 defines structural basis of an epitope for IgE cross-linking and anaphylaxis in vivo.” PNAS Nexus 1, pgac054. DOI: 10.1093/pnasnexus/pgac054

Superposition of the human 2F10 IgE mAb and the murine 7A1 IgG mAb Fabs binding to Der p 2.0103 to assess the relative location of their epitopes

144. Macnar J.M., Brzezinski D., Chruszcz M., Gront D. (2022) “Analysis of protein structures containing HEPES and MES molecules.” Protein Science 31, e4415. DOI: 10.1002/pro.4415

Model of HEPES molecule shown in two different orientations

143. Njiru C., Xue W., De Rouck S., Alba J.M., Kant M.R., Chruszcz M., Vanholme B., Dermauw D., Wybouw N., Van Leeuwen T. (2022) “Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals.” BMC Biology 20, 131. DOI: 10.1186/s12915-022-01323-1

142. Reuthers T., Nugraha R., Taki A.C., O’Malley A., Karnaneedi S., Zhang S., Kapingidza A.B., Mehr S., Kamath S.D., Chruszcz M., Mackay G., Campbell D.E., Lopata A.L. (2022) “The first reptilian allergen and major allergen for fish-allergic patients: Crocodile β-parvalbumin.” Pediatric Allergy and Immunology 33, e13781. DOI: 10.1111/pai.13781

Model of Cro p 1 in cartoon representation. Calcium ions are shown as red spheres. Highly conserved residues are marked in slate.

141. Dixit S., Widemann E., Bensoussan N., Salehipourshirazi G., Bruinsma K., Milojevic M., Shukla A., Romero L.C., Zhurov V., Bernards M.A., Chruszcz M., Grbić M., Grbić V. (2022) “β-Cyanoalanine synthase protects mites against Arabidopsis defenses.” Plant Physiology 189, 1961-1975. DOI: 10.1093/plphys/kiac147

140. Daneshian L., Renggli I., Hanaway R., Offermann L.R., Schlachter C.R., Arriaza R.H., Henry S., Prakash R., Wybouw N., Dermauw W., Shimizu L.S., Van Leeuwen T., Makris T.M., Grbic V., Grbic M., Chruszcz M. (2022) “Structural and functional characterization of β-cyanoalanine synthase from Tetranychus urticae.” Insect Biochemistry and Molecular Biology 142, 103722. DOI: 10.1016/j.ibmb.2022.103722

Active site of TuCAS (PDB code: 6PMU). PLP is linked to Lys52 and shown in stick representation with carbon atoms marked in yellow.

139. Minor W., Cymborowski M., Borek D., Cooper D.R., Chruszcz M., Otwinowski Z. (2022) “Optimal structure determination from sub-optimal diffraction data.” Protein Science 31, 259-268. DOI: 10.1002/pro.4235

138. Schlachter C.R., O’Malley A., Grimes L.L., Tomashek J.J., Chruszcz M., Lee L.A. (2022) “Purification, Characterization, and Structural Studies of a Sulfatase from Pedobacter yulinensis.” Molecules 27, 87. DOI: 10.3390/molecules27010087

P. yulinensis sulfatase (PDB code: 7STV) shown in surface representation (left). Active site of the enzyme crystallized in the presence of malonate (right).